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Description of random Gaussian surfaces by a four-vertex model
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A lattice model of random self-affine surfaces is derived using the inverse order of applying the six-vertex
model. The well-argued simplification of such an approach results in the four-vertex model. The high numeri-
cal efficiency of the four-vertex model is demonstrated by calculating the fractal dimension of contour loops
~isolines! of fractional Brownian surfaces as the function of the roughness exponent.
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Various physical phenomena can be modeled by rand
Gaussian surfaces, which are scale-invariant within a w
range of scales. Here are few examples: geological la
scapes@1#, deposited metal films@2#, fractured surfaces@3,4#,
streamfunctions of two-dimensional~2D! turbulent flows@5#
~particularly, several scaling laws of the passive scalar tur
lence have been expressed via the fractal dimensions o
streamfunction contour loops@6,7#!. Such surfaces have bee
observed and studied in many experiments, cf. reference
@2,3#; their generic statistical properties have been stud
both analytically and numerically@2–6,8–10#.

Here we develop a simplefour-vertex~4V! model provid-
ing an easy way to produce lattice representations of ro
surfaces with specified statistical properties. This model
be used as a universal and efficient tool for numerical sim
lations, as evidenced below by calculating the fractal dim
sion of contour loops of self-affine surfaces.

The structure of the paper is as follows. First, we der
the inverse six-vertex modelas a generalization of the 2D
percolation model. This model maps random surfaces to
lattices and is similar to the six-vertex~6V! model @11#
~hence the name of the model!. Further we focus on the 4V
model, which is the 111-dimensional@~111!D# version of
the inverse 6V model. It is argued that the~111!D surfaces
of the 4V model belong to the same universality class~i.e.
obey the same scaling laws! as the statistically isotropic two
dimensional surfaces. This simplified~111!D geometry re-
sults in a very high numerical efficiency of the 4V model

It has been known for a long time that the statistic
topography of the‘‘monoscale’’ surfaces can be mappe
to the ~possibly correlated! percolation problem on ir-
regular lattices@12,13#. The term ‘‘monoscale’’ refers to
the smooth surfaces of boundedD variance D(r0)
5^@c(r)2c(r1r0)#2& and decaying correlation functio
C(r0)5^c(r)c(r1r0)&. Here the functionc(r) defines the
height of a surface, andr is a vector on the reference plan
If the long-scale decay rate ofC(r0) is high @more specifi-
cally, at the limit r→`, C(r0),r 23/4], then the problem
belongs to the universality class of ordinary percolation@14#.
Otherwise we are dealing with the correlated percolat
problem @15#, when the critical exponents depend on t
scaling exponent of the correlation function. The mapping
Ziman @12,13# can be also adapted to the‘‘multiscale’’ sur-
facesof unbounded delta variance~cf. @3#!, particularly to
the fractional Brownian surfaces@16# with D(r0)}ur0u2H,
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whereH is the Hurst~or roughness! exponent. However, in
this case a more efficient approach can be developed by m
ing use of the mapping between the 6V model and the bo
centered solid-on-solid~SOS! model@17,18#. Its main advan-
tage is that a complete set of equidistant horizontal cont
cuts can be generated at once on a single lattice. This
particularly useful feature for the numerical analysis of p
sive scalar transport@10#.

The mapping developed in@12,13# can be outlined as fol-
lows. The minimami of the random surface define the sit
of an irregular percolation lattice. The saddle-pointsSi j @be-
tweeni th andj th minima (i , j )] correspond to the bonds o
the lattice. Thus, the bonds can be drawn as the stee
descend paths fromSi j to mi and mj , see Fig. 1. The dua
lattice is constructed analogously; its sites~and hence the
faces of the primary lattice! correspond to the maximaMi of
the surface. Suppose now that the random surface is floo
by water. If the water levelc0 is low, only the minima are
flooded. Two neighboring ‘‘lakes’’mi and mj become con-
nected by a ‘‘strait,’’ when the flood levelc0 reaches the
saddle-pointSi j . Therefore, the lattice bond is declare
unbroken ifc(Si j ),c0, wherec(Si j ) is the surface heigh
at the saddle point; this criterion is equivalent to~possibly
correlated! dicing at every bond. Then, the flooded regio

FIG. 1. Mapping of the continuous percolation problem to t
percolation on an irregular lattice. Black and white loops are le
lines of the random surface, lower regions are darker; black d
denote the maxima, and white dots, the minima. Black lines w
arrows form the surrounding lattice; their crossing points are
saddles of the surface. The percolation lattice itself is formed
bold white lines, which are the steepest descend paths from
saddle points to the minima.
©2001 The American Physical Society01-1
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correspond to the percolation clusters, and the flood levec0
matches the fraction of unbroken bonds.

Further, the surface heightc(r) can be interpreted as th
stream function of a velocity fieldv5 ẑ3“c(r); hereẑ de-
notes the unit vector perpendicular to the reference pla
Then, the sites and faces of the percolation lattice repre
the elementary vortices of opposite polarity. The direction
the flow can be marked by arrows along the edges of
surrounding lattice~the sites of which are defined as the mi
points of the bonds and edges, as the lines separating
sites of the primary lattice from the sites of the dual lattic!.
The vertices of the surrounding lattice correspond to
saddle points of the surface, and each vertex meets
edges representing the fluxes of the velocity field betw
neighboring minima and maxima. These fluxes can be
sumed to be of the unit length. Indeed, with a proper cho
of units, all the extrema can be put equal to60.5 without
affecting the behavior of the long contour lines~which are
always close to the percolation levelc50) by deforming the
surface in the neighborhood of the extrema. The hulls~the
loops of arrows surrounding tightly the percolation cluste!
correspond to the contour linesc(r)5c0.

This mapping can be applied to the ‘‘multiscale’’ surface
as well @3#. However, the criterionc(Si j ),c0 is no more
equivalent to dicing. Indeed, the heights of the saddle po
of an infinitely extending ‘‘multiscale’’ surface vary in a
unbounded range. Meanwhile, the height difference of ne
boring saddle points remains finite. Such a distribution
heights cannot be obtained as a result of dicing. Besides
pattern of arrows on the surrounding lattice is no mo
equivalent to the original surface. The heights of the extre
of the ‘‘multiscale’’ surfaces vary also in an unbounded ran
and cannot be put equal to60.5. Thus, the fluxes are un
avoidably of different strength, and for a complete mappi
each arrow on the surrounding lattice has to be labeled w
the respective number.

The inverse six-vertex modelrestores the situation whe
all the arrows on the surrounding lattice are of unit length
abandoning the one-to-one mapping between the sa
points of the surface and the vertices of the surrounding
tice ~the other mapping pairs are also lost!. Instead, the
streamfunctionc(r) is approximated by such a discrete fun
tion, which is defined at the faces of an arbitrary~e.g., qua-
dratic! surrounding lattice and has face-to-face increme
either11 or 21 ~reasonable fit of real physical surfaces c
be achieved by a proper choice unit lengths!. As a result, all
the interface fluxes are unitary andthe arrows on the sur-
rounding lattice provide a complete representation of t
surface. Due to incompressibility, at each vertex, there a
two incoming and two outgoing arrows, i.e., the arrows c
be oriented in six different ways, exactly like in the case
six-vertex model, see Fig. 2. However, the six-vertex mo
is a statistical model, which ascribes a certain Hamiltonian

FIG. 2. Possible arrow configurations for the six-vertex mode
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the configuration of arrows. According to the convention
model@11#, all the arrow configurations are taken with equ
weights; the corresponding surface has roughness expo
H50 @17#. Here we are proceeding in aninverse order: if
there is a surface~or an ensemble of surfaces with specifi
statistical properties!, then theinverse six-vertex modelpro-
vides a convenient and numerically efficient way to constr
a lattice representation of it.

For the percolation model, all the vertices of the surroun
ing lattice are saddlelike: counting the edges in the clockw
order, the incoming and outgoing arrows are alternating@pat-
terns~e! and ~f! in Fig. 2; thus, the percolation model cou
also have been named the two-vertex model#. Here we have
also some shearlike vertices: two outgoing arrows are
lowed by two incoming ones@patterns~a!–~d! in Fig. 2#.
Hence, the inverse six-vertex model can be considered
generalization of the percolation model. The clusters~dark
gray lines in Fig. 3! are the regions with 2n20.5,c(r)
<2n10.5, wheren is an integer. For a shearlike vertex, th
bond is kept, if on both sides of it, there is one incoming a

FIG. 4. Four-vertex~111-dimensional! model: a pattern arising
for the polygon sizeL52049 andH50.5. Darker areas correspon
to lower regions of the surface; black and white lines depict eq
distant level lines.

FIG. 3. Percolation~left! and inverse six-vertex~right! models:
dark gray lines depict the percolation clusters, and light gray lin
the bonds of the dual lattice. The arrows on the surrounding lat
~diagonal grid! can be treated as unitary fluxes of an incompress
flow. The oriented loops of arrows are the cluster hulls and rep
sent the level lines of the streamfunction. For the percolation mo
the flow is formed by regularly packed elementary vortices. For
inverse six-vertex model, the polarity of vortices~the direction of
arrows! is shuffled; the scaling exponents are defined by long-ra
correlation of the direction of the arrows.
1-2
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one outgoing arrow. For a saddlelike vertex, the fate of
bond is defined by the actual height of the saddle po
exactly like in the case of the percolation model@more pre-
cisely, since one-to-one mapping between the saddle po
and bonds has been lost, the bond between two vertice
kept, if the vertices are connected by region 2n20.5,c(r)
<2n10.5]. In Fig. 3, the saddle heights are continuou
distributed. However, for the sake of simplicity, one can a
simply break~keep! all these bonds by slightly deforming th
surface: the scaling laws will not be affected, since the
quired change in the surface height is small (,0.5). Note
also that the clusters and hulls@the level linesc(r)52n
60.5# have the same fractal dimension: each cluster is
braced between two hulls of a small average distance@their
level difference~one! is much less than the large-scale va
ance~unbounded!#.

The inverse 6V model can be easily applied to study
properties~e.g., the statistics of contour loops! of natural
surfaces. However, the Monte Carlo analysis of rando
model surfaces~e.g., fractional Brownian surfaces! can be
very time-consuming. Such calculations can be greatly s
plified by using~111!D geometry@10#. The real 2D stream
function c(x,y) is substituted by the stream function of tw
shear flowsc1(x)2c2(y); see Fig. 4. Herec1,2(x) are ran-
dom functions of one variable obeying the same statist
properties as the functionc(x,0). It has been expected th
for fractional Brownian functions, both surfaces belong
the same universality class, i.e., the scaling exponents ar
same. There are several reasons for such an expectatio~a!
in both cases, the scaling laws of the correlation function
delta variance are the same;~b! in both cases, the fracta
dimension of the complete set of contour loops at a fix
height isD522H @1#; ~c! according to the numerical resul
for H50.5, the fractal dimension of a single contour lo
Dh51.28160.003 remains unchanged, when the quasi-
flow is made up of more than two shear flows@10#.

FIG. 5. Difference between the fractal dimension of the cont
loops and the linear conjectureD lin5(32H)/2.
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In the case of~111!D surfaces, the inverse six-verte
model becomes extremely simple. There are no more sad
like vertices of the surrounding lattice, i.e., of the six po
sible arrow configurations, two are excluded. This allows
to speak about afour-vertex model. On the square lattice, th
contour lines can be found according to the following alg
rithm:

xn115xn1w2~yn!, yn115yn1w1~xn11!. ~1!

Here (xn ,yn) are the coordinates of thenth point on a con-
tour line ~hull!; w1(x),w2(y)561 are the increments of th
streamfunction~in the case ofH50.5 — random uncorre-
lated sequences of11 and21).

Algorithm ~1! was used to calculate the fractal dime
sion of the contour line as the function of the roug
ness exponentH; see Fig. 5. The average distan
d5^max(uxa2xbu,uya2ybu)& between the endpointsra,b of the
contour line segments of lengthl was determined for differ-
ent values ofl using the Monte Carlo method. The fract
dimensions were found using least square fit of the dir
simulation results, see Fig. 6. The asymptotic behav
d→Al1/Dh1BlC was expected; an alternative fitting functio
d→Al1/Dh1Bl2111/Dh1C was also tested. ForH50, the
correction to the fractal scalingd→Al1/Dh appeared to be
more complex than a simple power law@19#; this is the cause
of a relatively high uncertainty. Except forH50.5, the com-
puter time needed to generate a single contour line of len
l is determined by the time needed to produce a fractio
Brownian time series of lengthd and scales asd2. For
H50.5, there is no need to generate fractional Brown
function ~which is substituted by simple Brownian function!;
the computation time scales simply as the length of the cu
l. Owing to this, it was possible to determine the frac
dimension with a very high precision,Dh(H50.5)
51.280 7560.000 05.

These results do not support the super-universality
pothesis of Kondev and Henley@8#, which, if valid, would
lead to the analytic dependenceDh(H)5(32H)/2, i.e., to a
simple horizontal line in Fig. 5. ForH50.5, there is a good
agreement between our result and that of Apelianet al. @10#.
The good agreement between our estimateDh(H50)
51.5060.01 and the analytic 2D resultDh(0)51.5 @20,8#
serves as an additional argument supporting the idea
~111!D and 2D surfaces belong to the same universa
class.

r

FIG. 6. Displacement vs the curve length of contour loops
111-dimensional geometry,H50.5. The mismatch between the nu
merical resultsd i and fitted functionf ( l i) is reduced to the standar
deviations i .
1-3
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In conclusion, the four-vertex model is a numerically e
ficient @see Eq.~1!# lattice model of the multiscale surface
applicable to various physical phenomena. It is particula
well-suited for the analysis of passive scalar transport in
bulent velocity field. Our simulation results~i! support the
idea that~111!D and 2D fractional Brownian surfaces b
long to the same universality class;~ii ! call in question the
.
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super-universality hypothesis@8# and hence the formulaDh

5(32H)/2.
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