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Description of random Gaussian surfaces by a four-vertex model
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A lattice model of random self-affine surfaces is derived using the inverse order of applying the six-vertex
model. The well-argued simplification of such an approach results in the four-vertex model. The high numeri-
cal efficiency of the four-vertex model is demonstrated by calculating the fractal dimension of contour loops
(isolineg of fractional Brownian surfaces as the function of the roughness exponent.
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Various physical phenomena can be modeled by randorwhereH is the Hurst(or roughnessexponent. However, in
Gaussian surfaces, which are scale-invariant within a wid¢his case a more efficient approach can be developed by mak-
range of scales. Here are few examples: geological landng use of the mapping between the 6V model and the body-
scape$l], deposited metal filmg2], fractured surfaces3, 4], centered solid-on-solitSOS model[17,1§. Its main advan-
streamfunctions of two-dimension@D) turbulent flows[5]  tage is that a complete set of equidistant horizontal contour
(particularly, several scaling laws of the passive scalar turbueuts can be generated at once on a single lattice. This is a
lence have been expressed via the fractal dimensions of thgarticularly useful feature for the numerical analysis of pas-
streamfunction contour loof$,7]). Such surfaces have been sjye scalar transpoftLO].
observed and studied in many experiments, cf. references in The mapping developed [12,13 can be outlined as fol-
[2,3]; their generic statistical properties have been studieqpys. The minimam; of the random surface define the sites
both analytically and numericall}2—6,8—10. _ of an irregular percolation lattice. The saddle-poigis[be-

Here we develop a simpfeur-vertex(4V) model provid-  tweenith andjth minima (<j)] correspond to the bonds of
ing an easy way to produce lattice representations of rougfhe |attice. Thus, the bonds can be drawn as the steepest
surfaces with specified statistical properties. This model cagescend paths frors; to m, andm;, see Fig. 1. The dual
be used as a universal and efficient tool for numerical simugattice is constructed analogously; its sit@d hence the
Ia_ttions, as evidenced below by palculating the fractal dimensgces of the primary lattioecorrespond to the maxinid; of
sion of contour loops of self-affine surfaces. _ the surface. Suppose now that the random surface is flooded
" The structure oftthe pagg IS as fOHO‘I’.VS-t_F'rSt’fV‘;ﬁ d‘Zr[')"‘i‘by water. If the water levely, is low, only the minima are

e inverse six-vertex models a generalization of the i g “ , , .
percolation model. This model maps random surfaces to Zﬂce)g?eedd.b';ws ‘g?:g:,?oxﬂgn I?hk: Sflfg(ljc? Tgvrgifobfgggisc?ﬁe
lattices and is similar to the six-vertef6V) model [11] saddle-pointS;;. Therefore, the lattice bond is declared

(hence the name of the mogleFurther we focus on the 4V | Lb oken if (S:) < o, Where N :
O . . . i 0 #(S;j) is the surface height
model, which is the %1-dimensional(1+1)D] version of at the saddle point; this criterion is equivalent (fmssibly

the inverse 6V model. It is argued that tfiet 1)D surfaces . relateql dicing at every bond. Then, the flooded regions
of the 4V model belong to the same universality cléss.

obey the same scaling lajas the statistically isotropic two-
dimensional surfaces. This simplifi¢d+1)D geometry re-
sults in a very high numerical efficiency of the 4V model.

It has been known for a long time that the statistical
topography of the‘monoscale” surfaces can be mapped
to the (possibly correlated percolation problem on ir-
regular lattices[12,13. The term “monoscale” refers to
the smooth surfaces of bounded variance A(rg)
=([¢(r)—(r+ry)]? and decaying correlation function
C(rg)=(¢(r) y(r+rg)). Here the functiony(r) defines the
height of a surface, andis a vector on the reference plane.
If the long-scale decay rate @(rg) is high[more specifi-

cally, at the limitr—o, C(ro)<r 3’4],.then the problem FIG. 1. Mapping of the continuous percolation problem to the
belongs to the universality class of ordinary percolafibfl.  percolation on an irregular lattice. Black and white loops are level
Otherwise we are dealing with the correlated percolationines of the random surface, lower regions are darker; black dots
problem[15], when the critical exponents depend on thegenote the maxima, and white dots, the minima. Black lines with
scaling exponent of the correlation function. The mapping ofarrows form the surrounding lattice; their crossing points are the
Ziman[12,13 can be also adapted to theultiscale” sur-  saddles of the surface. The percolation lattice itself is formed by
facesof unbounded delta variandef. [3]), particularly to  bold white lines, which are the steepest descend paths from the
the fractional Brownian surface$16] with A(rg)|ro|?™,  saddle points to the minima.
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FIG. 2. Possible arrow configurations for the six-vertex model. E

correspond to the percolation clusters, and the flood lgyel J
matches the fraction of unbroken bonds.
Further, the surface heiglgt(r) can be interpreted as the E

stream function of a velocity field =Zzx V (r); herez de-
notes the unit vector perpendicular to the reference plane. ™
Then, the sites and faces of the percolation lattice represent

the elementary vortices of opposite polarity. The direction of
the flow can be marked by arrows along the edges of th
surrounding latticéthe sites of which are defined as the mid-

FIG. 3. Percolatior(left) and inverse six-vertexight) models:
ark gray lines depict the percolation clusters, and light gray lines,
e bonds of the dual lattice. The arrows on the surrounding lattice

. . . diagonal grid can be treated as unitary fluxes of an incompressible
points of the bonds and edges, as the lines separating t %w. The oriented loops of arrows are the cluster hulls and repre-

s?}es of the pl’ll’?al‘k)]/ lattice frogj thel Slt.es of the dualdlabtlceh sent the level lines of the streamfunction. For the percolation model,
The vertices of the surrounding lattice correspond to thyq g6,y is formed by regularly packed elementary vortices. For the
saddle points of the surface, and each vertex meets fougerse six-vertex model, the polarity of vorticébe direction of

edges representing the fluxes of the velocity field betweeqowg is shuffled; the scaling exponents are defined by long-range
neighboring minima and maxima. These fluxes can be assgrrelation of the direction of the arrows.

sumed to be of the unit length. Indeed, with a proper choice

of units, all the extrema can be put equaltd.5 without e configuration of arrows. According to the conventional
affecting the behavior of the long contour lineshich are  54ei111], all the arrow configurations are taken with equal
always close to the percolation lewgt=0) by deforming the  \yeights: the corresponding surface has roughness exponent
surface in the neighborhood of the extrema. The h(ilie H=0 [17]. Here we are proceeding in anverse order if

loops of arrows surrounding tightly the percolation clusters ihere s a surfacéor an ensemble of surfaces with specified

correspond to the contour ling#(r) = . statistical propertigs then theinverse six-vertex modeiro-

This mapping can be applied to the “multiscale” surfaces, jges a convenient and numerically efficient way to construct
as well[3]. However, the criterion/(S;;) <y, is no more 4 |attice representation of it.

equivalent to dicing. Indeed, the heights of the saddle points ko the percolation model, all the vertices of the surround-
of an infinitely extending “multiscale” surface vary in an g |attice are saddlelike: counting the edges in the clockwise
unb_ounded range. Meanwh_lle, the_ height dlffere_ncg Of_”e'ghbrder, the incoming and outgoing arrows are alternaftja-
bo_nng saddle points remains finite. Such_a_ dlstrlbu_uon Ofterns(e) and(f) in Fig. 2; thus, the percolation model could
heights cannot be obtained as a result of dicing. Besides, thgsy have been named the two-vertex mbdéere we have
pattern of arrows on the surrounding lattice is no more;iso some shearlike vertices: two outgoing arrows are fol-
equivalent to the original surface. The heights of the extremgg,veq by two incoming onegpatterns(a—(d) in Fig. 2].

of the “multiscale” surfaces vary also in an unbounded rangeence, the inverse six-vertex model can be considered as a

and cannot be put equal t00.5. Thus, the fluxes are un- generalization of the percolation model. The clustefark
avoidably of different strength, and for a complete mappindgray lines in Fig. 3 are the regions with 2— 0.5< y(r)
each arrow on the surrounding lattice has to be labeled with- 5, + 0 5 wheren is an integer. For a shearlike vertex, the

the respective number. o bond is kept, if on both sides of it, there is one incoming and
The inverse six-vertex modeestores the situation when

all the arrows on the surrounding lattice are of unit length by
abandoning the one-to-one mapping between the saddl
points of the surface and the vertices of the surrounding lat
tice (the other mapping pairs are also losinstead, the
streamfunction/(r) is approximated by such a discrete func-
tion, which is defined at the faces of an arbitréeyg., qua-
dratio surrounding lattice and has face-to-face increments
either+1 or — 1 (reasonable fit of real physical surfaces can
be achieved by a proper choice unit lengti#ss a result, all
the interface fluxes are unitary anke arrows on the sur-
rounding lattice provide a complete representation of the
surface Due to incompressibility, at each vertex, there are ' e -

two incoming and two outgoing arrows, i.e., the arrows can F|G. 4. Four-vertex1+1-dimensionalmodel: a pattern arising
be oriented in six different ways, exactly like in the case offor the polygon sizé.=2049 andH =0.5. Darker areas correspond
six-vertex model, see Fig. 2. However, the six-vertex modeto lower regions of the surface; black and white lines depict equi-
is a statistical model, which ascribes a certain Hamiltonian talistant level lines.
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B T FIG. 6. Displacement vs the curve length of contour loops in
Sl 1+1-dimensional geometryd =0.5. The mismatch between the nu-
n o merical resultss; and fitted functiorf (l;) is reduced to the standard
re = deviationa; .
S A
= In the case of(1+1)D surfaces, the inverse six-vertex
- model becomes extremely simple. There are no more saddle-
LS like vertices of the surrounding lattice, i.e., of the six pos-
e sible arrow configurations, two are excluded. This allows us
to speak about four-vertex modelOn the square lattice, the

contour lines can be found according to the following algo-
FIG. 5. Difference between the fractal dimension of the contourrithm:
loops and the linear conjectul®y;,=(3—H)/2.

one outgoing arrow. For a saddlelike vertex, the fate of the Xn+1=Xn T @2(Yn): Ynr1=YnT @1(Xns). @)
bond is defined by the actual height of the saddle point,

exactly like in the case of the percolation mogieiore pre- |41 &.,y,) are the coordinates of theth point on a con-

cisely, since one-to-one mapping between the saddle pointg,;r jine (hull); o1(x),-(y)=*1 are the increments of the
and bonds has been lost, the bond between two vertices igreamfunction(in the case oH=0.5 — random uncorre-

kept, if the vertices are connected by regiam-20.5<#(r)  |ated sequences of1 and—1).
<2n+0.5]. In Fig. 3, the saddle heights are continuously Algorithm (1) was used to calculate the fractal dimen-
distributed. However, for the sake of simplicity, one can alsosion of the contour line as the function of the rough-
simply break(keep all these bonds by slightly deforming the ness exponentH; see Fig. 5. The average distance
surface: the scaling laws will not be affected, since the res=(max(x,—X|.[ya—Ys|)) between the endpointg ,, of the
quired change in the surface height is smatl(Q(5). Note contour line segments of lengttwas determined for differ-
also that the clusters and hullthe level linesy(r)=2n  ent values ofl using the Monte Carlo method. The fractal
+0.5] have the same fractal dimension: each cluster is emdimensions were found using least square fit of the direct
braced between two hulls of a small average distdttosir ~ Simulation results, see Fig. 6. The asymptotic behavior
level difference(one is much less than the large-scale vari- 5—Al*Ph+BI® was expected; an alternative fitting function
ance(unboundeyl. 65— AlYPn+ B 1*0h4 C was also tested. Fdd =0, the
The inverse 6V model can be easily applied to study theorrection to the fractal scaling—Al“"n appeared to be
properties(e.g., the statistics of contour loopsf natural ~ More complex than a simple power 1388]; this is the cause
surfaces However, the Monte Carlo analysis of random Of @ relatively high uncertainty. Except féf=0.5, the com-
model surfacege.g., fractional Brownian surfacesan be Puter time needed to generate a single contour line of length
very time-consuming. Such calculations can be greatly siml- IS de_terml_ned by .the time needed to produce e;fractlonal
plified by using(1+1)D geometry{10]. The real 2D stream Brownian time series of lengtld and scales as~. For

- : . . H=0.5, there is no need to generate fractional Brownian
function (x,y) is substituted by the stream function of two S - . : ;
shear flowsy,(x) — ,(y); see Fig. 4. Heral ) are ran- function (which is substituted by simple Brownian functjon

; . . . Ehe computation time scales simply as the length of the curve
dom functions of one variable obeying the same statistical Owing to this, it was possible to determine the fractal
properties as the functiort(x,0). It has been expected that dimension with a very high precisionD,(H=0.5)
for fractional Brownian functions, both surfaces belong to_ 1 580 75-0.00005.
the same universality class, i.e., the scaling exponents are the These results do not support the super-universality hy-
same. There are several reasons for such an expect@jon: pothesis of Kondev and Henld], which, if valid, would
in both cases, the scaling laws of the correlation function angeag to the analytic dependenBg(H)=(3—H)/2, i.e., to a
delta variance are the sam@) in both cases, the fractal sjmple horizontal line in Fig. 5. Fdrl =0.5, there is a good
dimension of the complete set of contour loops at a fixedagreement between our result and that of Apetiaal. [10].
height isD=2—H [1]; (c) according to the numerical results The good agreement between our estim@g(H=0)
for H=0.5, the fractal dimension of a single contour loop =1.50+0.01 and the analytic 2D resu,(0)=1.5[20,8|
Dy=1.281+0.003 remains unchanged, when the quasi-2Dserves as an additional argument supporting the idea that
flow is made up of more than two shear floj<]. (1+1)D and 2D surfaces belong to the same universality

class.
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In conclusion, the four-vertex model is a numerically ef- super-universality hypothesj§] and hence the formulB,
ficient[see Eq(1)] lattice model of the multiscale surfaces, =(3—H)/2.
applicable to various physical phenomena. It is particularly
well-suited for the analysis of passive scalar transport in tur-
bulent velocity field. Our simulation result$) support the The support of Estonian Science Foundation Grant No.
idea that(1+1)D and 2D fractional Brownian surfaces be- 3739 is acknowledged. The author is grateful to Professor J.
long to the same universality clas$;) call in question the Engelbrecht for useful discussions.
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